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The mechanical quadrature method for linear and nonlinear Volterra’s integral 

equations of the second kind. 
 
 
 
 
I. O. Isaac1 

ABSTRACT 
 

This paper studies the numerical evaluation of volterra’s integral equations of the second kind. A deliberate attempt is made to deviate 

from the traditional method of representing the unknown solution by means of resolvent.  This is actualized with the aid of the 

mechanical quadrature method.  The problem is solved in Banach space setting.  Some numerical results are obtained for the cases of 

linear and nonlinear equations. 
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INTRODUCTION 
 

Like in many different problems of applied nature, the exact 

analytical solution to volterra’s integral equations of the second kind. 
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often favours a limited class of equations, namely, the class with 

linear kernels.  This emanates from the fact that a typical classical 

analytical approach consists in representing the unknown solution by 

means of resolvent (Volterra , 1982). 

Among the most effective approximate analytical approach 

includes the Picards approximate method (Myskis, 1971) or any other 

improved interactive setting (Golavash and Kalaida, 1974).  

Unfortunately, they are collectively restrictive in applications in that, 

on the very bases of their construction lies the representation of the 

unknown solutions in the form of an infinite power series (Badalov, 

1980). 

In this paper, we are suggesting the use of mechanical quadrature 

method for the approximate solutions of not only the linear volterra’s 

integral equations of the second kind, but also for the actualization of 

its nonlinear counterpart (Baker and Keech, 1978; Bialecki et al, 

2004).  The method is developed in a Banach space B (this means that 

the volterra operator maps a function ϕ from a Banach space into 

itself).  However, to keep the treatment in a simpler level, we may, if 

necessary, employ the techniques of Hilbert spaces.  The numerical  

solution is sought in the form of series 
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where: ϕi  is a system of linearly independent coordinate elements and  

ci, are the unknown coefficients.  To evaluate the unknown coefficie- 

nts, a finite system of algebraic equations is obtained.  The stability of 

the process is demonstrated in the solved examples. 
 

THE METHOD AND SPACE 
 

We re-write equation (1.1) in an operator form 

                                       fTyy +=                                    …  (2.1) 

where T may be linear or nonlinear and so also may be equation (2.1).  

In future, we shall assume that operator T is linear and acts in Banach 

spaces.  The element f is presumably known, whereas y is called the 

unknown function and both of them belong to some metric spaces F 

and Y respectively. 

In the event that operator T is completely continuous and what is 

more, the number 1 is not the spectrum point of operator T, the 

inverse     U = (I – T) – 1    exists and is bounded.  That is, ∞<U  

and consequently possesses the correctness property relative to the 

right-hand side expressible by the inequality 

                              .~~ ffUyy −⋅≤−                                 …  (2.2) 

where y~ and f~ are the approximating elements to y and f 
respectively.  Notice here that the completely continuous property of 
T permits the validity of the inequality ε<− yy ~  whenever 

δ<− ff ~  holds for arbitrary small positive numbers ε and δ. 

We recall that if a linear operator T is completely continuous (co-

mpact) it can be approximated, to  arbitrary accuracy, with a finite- 

dimensional operator T~ (Baker and Keech, 1978).  Consequently, in  

place of equation (2.1), we write a rather very close equation 
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                                                                     …  (2.3) .~~~ fyTy +=

Assuming the existence and boundedness of operator  

and the fulfillment of the condition 

1)~( −− TI
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which is always possible provided 1 is not a spectrum point of T~  

(Yoshida, 1971), we obtain the estimate 
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This guarantees the fact that the higher the degree of approximation of 

the operator T to ,~T  the lesser the value of the approximating error.  

The accuracy of the approximating operator manifested by the 

indicator ,~TT −  may be improved in two ways: increase the 

dimension of operator T~  or, for practical purposes, choose the family 

of approximate operator equations which provide a greater accuracy 

for the same amount of calculations. 

Like many approximate formulas, the proposed method consist 

in representing the approximate solutions  of y in equation (2.1) in the 

form of the series 
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where ϕi , mi ,1=  is a system of linearly independent coordinate 

elements contained in Banach space B.  The unknown coefficients 

may be determined in many different ways as suggested by the 

requirement posed by the source error 

                                         … (2.6) ( ) fTc
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To further explain this remark, we note that in analyzing the 

given equation in Hilbert space, the minimum value of the source 

error is obtained with the assistance of the least square method and the 

value to be minimized is given by the equation 
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Notice that in the above simplification, the terms involving the 

products of ϕI and ϕj dropped out because of the pair orthogonality 

property of the bases in the Hilbert space. 

Differentiating both sides of (2.7) with respect to , we obtain 

a system of linear algebraic equations 

ic
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for the determination of .  Subtracting the approximate solution ic

                               mfyTy ε++= ~~  

from (2.1), we obtain the estimate 

          ( ) .~ 1
mTIyy ε⋅−≤− −  

Finally, we conclude this section by noting that if operator (I - T)-1 is 

bounded, the reduction in size of the approximate error is achieved 

whenever the numbers of the coordinate elements in (2.5) are 

increased. 
 

LINEAR ALGORITHM 
 

To actualize the solution of the linear equation 

           …  (3.1) ( ) ( ) ( ) ( ) [ )∫ ∈=−
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with the aid of the mechanical quadrature method it is necessary to 

take advantage of the expression 
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obtained from the original equation by fixing the value of the 

argument x.  The value of xi may be chosen by a special formula or 

defined before hand if, for example, f(x) is defined in a tabular form.  

Taking the values of xi as the nodal points of the quadrature formula, 

we replace equation (3.2) with a finite system 
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where Ri[y] is the approximating error.  The validity of equation (3.3) 

is assured by the assumption of continuity of the kernel and the right-

hand side f(x) in a given triangle and interval respectively.  Assuming 

that the error Ri[y] is insignificant and can therefore be ignored, we 

obtain a system of linear algebraic equations 
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Here, we introduce the following symbols and will maintain same in 

all our future discussions:    

       ( ) ( ) ( ) .,,,~
ijjiiiii KxxKfxfyxy ===  

The solution of (3.4) provides the approximate values of the 

unknown function ( ) ii yxy =~  at the nodal points xi.  System (3.4) 

may be transformed into the form 
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from where it is clear that the matrix of the coefficients of the 
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algebraic system is triangular.  This allows us to successively 

determine y1, y2, …, yn with the aid of the recurrent formula. 
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on condition that 

                                  (                                …  (3.8) ) .OKTI iii ≠−

Notice that condition (3.8) is always possible with a careful choice of 

the nodal points and the assurance of the smallness of the coefficients 

Ti .

In a circumstance where the trapezoidal formula is being used, 

equation (3.7) takes the form 
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NONLINEAR ALGORITHM 
 

The application of the quadrature formula to nonlinear equation 
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reduces it to the expression 
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which is further transformed to a system of nonlinear recurrent 

formula 
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Here, we have made use of symbol ( )jij yK  for 

( )( ).~,, jji xyxxK  If  however, the kernel K is linear in the 

nonlinear setting 
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equation (4.2) becomes 

                 …  (4.5) ( ) ( ) ( ) ( )i

x

a
ii xfdssyFsxKxy

i

=− ∫ )(,

and the associated system of algebraic equations takes the form 
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Equation (4.3) allows us to determine the approximate solutions 

yi by way of successive evaluation of n nonlinear equations 
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APPENDIX 
 

Linear equation 

We experiment the algorithm of the method for the 

determination of the solution to the equation 

  …  (5.1.1) ( ) ( ) [ 1.0,0,2 2
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where the points ixx =  = 0.00; 0.02; 0.04; 0.06; 0.08; 0.10.  For 

this purpose, we immediately take advantage of the generalized 

trapezoidal formula for the transformation of an integral to a finite 

sum given in equation (3.9).  This leads to the successive 

determination of the approximate solutions yi, for 6 nodal points with 

the step h translated to 0.02.  The approximate  results are as follows: 

y(0.00) = y1 = 1.000000 

y(0.02) = y2 = 1.061238 

y(0.04) = y3 = 1.147518 

y(0.06) = y4 = 1.252595 

y(0.04) = y5 = 1.353414 

y(0.04) = y6 = 1.461631 
 

Nonlinear equation 

To complete the verification of our method, we examine the 

nonlinear equation 
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where ( ) ( ) .,2, 2222 xxxx
ji exfexxK ji +− ==  Again, from 

equation (4.6), we quickly obtain the formula for the determination of 
the approximate solutions as follows:        
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As in appendix 5.1 above, the approximate results are as follows: 

y(0.00) = y1 = 1.00000 

y(0.02) = y2 = 1.10570 

y(0.04) = y3 = 1.20295 

y(0.06) = y4 = 1.31308 

y(0.04) = y5 = 1.43875 

y(0.04) = y6 = 1.58345 
 

ACKNOWLEDGEMENTS 
 

I wish to express my sincere gratitude to Professor Z. Lipcsey for 

his inspiration and professional advice in all the steps I took.  My 

gratitude also goes to Dr. G. A. Udofia whose fatherly comments and 

suggestions greatly improved the original manuscript.  To Dr. E. 

Eteng, he had been and will continue to remain a friend and the 

invisible hand that directs the success of almost every member of our 

great Department. 



The mechanical quadrature method for linear and nonlinear Volterra’s integral 
equations of the second kind. 

100
 

REFERENCES 
 

Badalov F. B. (1980) Power series method in nonlinear theory of 

viscous elasticity.  Fan, Tashkient.  p221.  

Baker C. T. and Keech M. S. (1978)  Stability regions in numerical 

treatment of the Volterra integral equations.  SIAM: SIAM J. 

Numer. Anal., No. 2:394 - 417. 

Bialecki B., Ganesh M. and Mustapha K.  (2004) A Petrov – Galerkin 

method with quadrature for elliptic boundary value problems.  

IMA J. Numer. Anal.,  24:157 – 177. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Golavash G. P. and Kalaida A. F. (1974)  Approximate methods for  

solving operator equations.  Kiev, Vysshaya Shkola, p 248. 

Myskis A. D. (1971) Advanced mathematics for Engineers. Special 

Course.  Nauka Publishers, Moscow.   p 632. 

Volterra V. (1982) The  theory of functional, integral and intro - 

differential equations.  Nauka Publishers, Moscow.   p 304 

Yosida K. (1971) Functional Analysis.  3rd ed. Berlin, Springer. 

  


	 
	I. O. Isaac1 
	INTRODUCTION 


